Zum ersten Mal wurde auf den kolossalen Vulkanen auf dem Mars, den höchsten Bergen in unserem Sonnensystem, Wasserfrost nachgewiesen. Das internationale Team unter der Leitung der Universität Bern verwendete hochauflösende Farbbilder der Berner Marskamera CaSSIS an Bord der Sonde ExoMars Trace Gas Orbiter der Europäischen Weltraumorganisation ESA. Zu verstehen, wo Wasser zu finden ist und wie es transportiert wird, ist für zukünftige Marsmissionen und die mögliche Erkundung des Mars durch den Menschen von Bedeutung.
Beitrag: Medienmitteilung der Universität Bern
«ExoMars» ist ein Weltraumprogramm der Europäischen Weltraumorganisation ESA und steht für Exobiologie auf dem Mars: Zum ersten Mal seit den 1970er-Jahren wird aktiv nach Leben auf dem Mars geforscht. An Bord des ExoMars Trace Gas Orbiter (TGO) befindet sich das Color and Stereo Surface Imaging System (CaSSIS), ein Kamerasystem, das von einem internationalen Team unter der Leitung von Professor Nicolas Thomas vom Physikalischen Institut der Universität Bern entwickelt und gebaut wurde. CaSSIS beobachtet den Mars seit April 2018 und liefert hochauflösende Farbbilder der Marsoberfläche.
Das Bild zeigt den Olympus Mons, den höchsten Vulkan nicht nur auf dem Mars, sondern im gesamten Sonnensystem. Es wurde am frühen Morgen (7:20 Uhr Ortszeit) von der Stereo- Kamera an Bord des ESA-Satelliten Mars Express aufgenommen. Die Aufnahme ist Teil einer neuen Studie, die zum ersten Mal Wasserfrost in der Nähe des Marsäquators nachweisen konnten, einem Teil des Planeten Mars, von dem man annahm, dass es dort keinen Frost gibt. (Quelle: © ESA/DLR/FU Berlin)
Mit diesen hochauflösenden Farbbildern konnte ein internationales Team unter der Leitung von Dr. Adomas Valantinas Wasserfrost auf dem Mars nachweisen. Die Studie wurde soeben in der Zeitschrift Nature Geoscience veröffentlicht. Valantinas war bis Oktober 2023 Doktorand am Departement Space Research & Planetary Sciences des Physikalischen Instituts der Universität Bern und ist derzeit dank des Postdoc.Mobility-Stipendiums des Schweizerischen Nationalfonds (SNF) als Gastforscher an der Brown University (USA).
Hochauflösendes (4,5 m/Pixel) CaSSIS-Farbbild des Frosts auf dem Calderaboden und dem Nordrand des Olympus Mons. An den gut beleuchteten steilen Hängen gibt es keinen Frost. (© ESA/TGO/CaSSIS CC-BY-SA 3.0 IGO)
Eine unerwartete Entdeckung
Der Frost wurde auf den Gipfeln der höchsten Berge des Mars entdeckt – den Tharsis-Vulkanen. Diese Vulkane sind die höchsten Berge im Sonnensystem, der Olympus Mons ragt bis zu 26 km über die umliegenden Ebenen hinaus. Diese Frostbildung war nicht erwartet worden, da diese Berge in niedrigen Breitengraden in der Nähe des Marsäquators liegen. «In diesen niedrigen Breitengraden hält die starke Sonneneinstrahlung die Oberflächentemperaturen tendenziell hoch. Daher haben wir nicht erwartet, dass wir dort Frost finden», so Valantinas. Ausserdem kühlt die dünne Atmosphäre auf dem Mars die Oberfläche nur unzureichend ab, so dass hoch gelegene Oberflächen in den Mittagsstunden genauso heiss werden können wie niedrig gelegene, was auf der Erde nicht der Fall ist.
Dieses Bild zeigt Frost auf dem Boden der Caldera des Vulkans Ceraunius Tholus. Die Bilder zeigen (A) eine Ansicht des Ceraunius Tholus von der Context Camera des Mars Reconnaissance Orbiters der NASA, wobei innerhalb des blau gefärbten Rechtecks eine frühmorgendliche Aufnahme von CaSSIS zu sehen ist, welche in Bild (B) vergrössert ist. Das weisse Rechteck von Bild (B) ist in Bild (C) vergrössert und zeigt allgegenwärtigen Frost auf dem Calderaboden, aber keinen auf dem Calderarand. (D) zeigt ein CaSSIS-Bild der gleichen Region, das zu einer anderen Tageszeit aufgenommen wurde, als kein Frost vorhanden war.
Die frostigen Regionen erscheinen blau aufgrund der Art und Weise, wie CaSSIS seine Bilder aufbaut. Es ist ein sogenanntes «NPB»-Bild, für das die Nahinfrarot- (N), panchromatischen (P) und blauen (B) Filter des Instruments kombiniert werden. (Quelle: © ESA/DLR/FU Berlin)
Valantinas erklärt: «Aufsteigende Winde bringen wasserdampfhaltige Luft aus dem Tiefland nach oben, die sich in der Höhe abkühlt und kondensiert. Das ist ein bekanntes Phänomen sowohl auf der Erde als auch auf dem Mars.» Das gleiche Phänomen verursacht die auffällige Arsia Mons Elongated Cloud – und die neue Studie zeigt, dass dieses Phänomen auch auf den Tharsis-Vulkanen zu morgendlichen Frostablagerungen führt. «Wie wir anhand der CaSSIS-Bilder sehen konnten, sind die dünnen Reifablagerungen nur kurz vorhanden, nämlich für einige Stunden um den Sonnenaufgang herum, bevor sie im Sonnenlicht verdampfen», so Valantinas weiter.
Erfolgreiche Zusammenarbeit
Um den Frost zu identifizieren, analysierten Valantinas und das Team mehr als 5’000 Bilder der Berner Marskamera CaSSIS. Seit April 2018 liefert CaSSIS Beobachtungen zur lokalen Staubaktivität, zu den jahreszeitlichen Veränderungen der CO2-Eisvorkommen und zur Existenz von Trockenlawinen auf dem Mars. Nicolas Thomas sagt dazu: «Dass wir nun die nächtliche Ablagerung von Wassereis auf dem Mars bei visuellen Wellenlängen und mit hoher Auflösung nachweisen konnten, ist ein weiterer Beweis für die beeindruckenden wissenschaftlichen Fähigkeiten des Berner Kamerasystems.»
Bild der Marskamera CaSSIS (Colour and Stereo Surface Imaging System). Das Kamerasystem wurde von einem internationalen Team unter der Leitung von Nicolas Thomas vom Physikalischen Institut der Universität Bern entwickelt und gebaut. CaSSIS ist an an Bord der Raumsonde ExoMars Trace Gas Orbiter (TGO) und beobachtet seit April 2018 den Mars. Die Kamera liefert spekatkuläre hochaufgelöste, farbige Bilder der Marsoberfläche. (Quelle: © Universität Bern)
Die Entdeckung wurde durch unabhängige Beobachtungen der hochauflösenden Stereokamera (HRSC) an Bord des ESA-Orbiters Mars Express und des Spektrometers Nadir and Occultation for Mars Discovery (NOMAD) an Bord von TGO validiert. Ernst Hauber, Geologe am DLR-Institut für Planetenforschung in Berlin und Mitautor der aktuellen Studie erklärt: «Diese Studie zeigt sehr schön, wie wertvoll verschiedene Orbitalinstrumente sind. Durch die Kombination von Messungen verschiedener Instrumente und Modellierung können wir unser Verständnis der Wechselwirkungen zwischen Atmosphäre und Oberfläche auf eine Weise verbessern, die mit einem Instrument allein nicht möglich wäre.» Die Ergebnisse zeigen gemäss Hauber auch, wie wichtig die langfristige Beobachtung planetarer Prozesse ist, da einige Phänomene erst durch den Vergleich mehrerer Messungen im Laufe der Zeit sichtbar werden.
Wichtige Erkenntnisse für zukünftige Marsmissionen
Trotz ihrer geringen Dicke – wahrscheinlich nur ein Hundertstel eines Millimeters (so dick wie ein menschliches Haar) – bedecken die Frostflecken eine riesige Fläche. «Die Menge an Frost entspricht etwa 150’000 Tonnen Wasser, die während der kalten Jahreszeit jeden Tag zwischen der Oberfläche und der Atmosphäre ausgetauscht werden, was etwa 60 olympischen Schwimmbecken entspricht», erklärt Valantinas.
«Zu verstehen, wo Wasser zu finden ist und wie es sich zwischen den Reservoirs bewegt, ist für viele Aspekte der Marsforschung von Bedeutung», so Thomas. «Natürlich wollen wir die physikalischen Prozesse verstehen, die das Klima auf dem Mars bestimmen. Aber auch das Verständnis des Wasserkreislaufs auf dem Mars ist von grosser Bedeutung, um wichtige Ressourcen für die künftige Erforschung des Mars durch den Menschen zu finden und herauszufinden, wo es auf dem Mars Wasser gibt und ob der Mars früher oder heute bewohnbar war oder ist», so Valantinas abschliessend.